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AN ADAPTIVE MULTISCALE GENERALIZED FINITE ELEMENT METHOD FOR
LARGE SCALE SIMULATIONS

FA9550-12-1-0379

Carlos Armando Duarte
Dept. of Civil and Environmental Engineering

Computational Science and Engineering Program
University of Illinois at Urbana-Champaign

Abstract

Hypersonic vehicles are subjected to extreme acoustic, thermal and mechanical loading
with strong spatial and temporal gradients and for extended periods of time. Long duration,
3-D simulations of non-linear response of these vehicles, is prohibitively expensive using
available Finite Element Methods and algorithms. This report presents recent advances of
a Generalized Finite Element Method (GFEM) for multiscale non-linear simulations. This
method is able to handle complex non-linear problems such as those exhibiting softening
in the load-displacement curve. Cohesive fracture models lead to this class of non-linear
behavior, which are significantly more computationally expensive than in the case of linear
elastic fracture mechanics. In this novel GFEM, scale-bridging enrichment functions are
updated on the fly during the non-linear iterative solution process. Non-linear fine-scale
solutions are embedded in the global scale using the partition of unity framework of the
Generalized FEM. Damage information computed at fine-scale problems are also used at
the coarse scale in order to avoid costly non-linear iterations at the global scale. This
method enables high-fidelity non-linear simulation of representative aircraft panels using
finite element meshes that are orders of magnitude coarser than those required by available
finite element methods.

We also report on a technique to perform a near-orthogonalization of scale-bridging enrich-
ments used in the multiscale GFEM. We show that, for any discretization error level, it leads
to systems of equations that are orders of magnitude better conditioned than in available
GFEMs. This so-called Stable Generalized FEM (SGFEM) requires minimal modifications
of existing GFEM software and leads to optimal convergence rates, regardless of the pres-
ence of singular solutions due to cracks. We also show that the error within enrichment
zones in the SGFEM is lower than in the GFEM. This is important for fracture mechanics
problems since parameters such as stress intensity factors are extracted within these zones.
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Generalized Finite Element Approximations

Generalized FEM approximation spaces (i.e., trial and test spaces) consist of three compo-
nents – (a) patches or clouds, (b) a partition of unity, and (c) the patch or cloud approxima-
tion spaces. The main ideas of the GFEM are summarized in this section.

Consider the usual finite element partitioning Ω h of a given domain Ω , in which Ω h is the
union of individual finite elements Ω e, e = 1, . . . ,nel. The basic idea behind the GFEM
is to hierarchically enrich a low-order standard FEM approximation space, SFEM, with
special functions tailored for the physics of the problem at hand. These functions belong
to a space SENR defined using the partition of unity property of Lagrangian finite element
shape functions, i.e.,

∑
α∈Jh

Nα = 1, (1)

where α, α ∈ Jh = {1, . . . ,nG}, is the index of a node in a finite element mesh with nG
nodes. Linear FEM shape functions are adopted in this work.

The test and trial GFEM space SGFEM are given by

SGFEM = SFEM +SENR (2)

where

SFEM = ∑
α∈Jh

Nαdα and SENR = ∑
α∈Jh

enr

Nα
χα , χα =

nα
enr

∑
i

Lαidαi, dα ,dαi ∈ R3 (3)

Here, i, i = 1, . . . ,nα
enr, denotes the index of the enrichment function Lαi at node α and nα

enr
is the number of enrichments at node α . Enrichments Lαi, i = 1, . . . ,nα

enr, form a basis of
the patch or cloud space χα(ωα) with ωα being the support of the FEM shape function Nα .
The set Jh

enr ⊂ Jh has the indexes of the nodes with enrichment functions. It is noted that
each patch (node) may adopt a different basis, depending on the behavior of the solution of
the problem over the node support.

Based on the above definitions, a GFEM shape function at a node α ∈ Jh
enr is given by

φ
αi(x) = Nα(x)Lαi(x) (no summation on α). (4)

The definition of shape functions as described above provides great flexibility since en-
richment functions are not limited to polynomials as in the standard FEM. For example,
in the case of cohesive fracture problems considered in this study, Heaviside functions
are adopted to represent discontinuities arbitrarily located in a finite element mesh. Fur-
thermore, enrichment functions for multiscale and non-linear problems can be computed
numerically as described next.
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Bridging Scales with the Generalized Finite Element Method

The Generalized Finite Element Method with global-local enrichments (GFEMgl) com-
bines ideas from the classical global-local finite element method with the Generalized FEM
described in the previous section. In contrast to available Generalized or eXtended FEMs,
which use analytical enrichment functions, this method provides a framework that allows
the enrichment of the GFEM solution space with functions obtained from the solution of
local boundary value problems. The boundary conditions for local problems are obtained
from the solution of the global problem discretized with a coarse finite element mesh.
The local problems can be accurately solved using an adaptive GFEM, and therefore the
GFEMgl can be applied to problems with limited a priori knowledge about the solution
like those involving 3-D complex fractures, multiscale or non-linear phenomena. In this
method, the patch or cloud approximation spaces are built with the aid of local boundary
value problems defined in a neighborhood ΩL of a crack or other local feature of interest.
Global-local enrichment functions can be built for many classes of problems. Here we
report on a three-dimensional formulation developed for propagating non-linear cohesive
fractures. Further details can be found in [12, 14]. It is noted that the GFEM developed
in project FA9550-09-1-0401 assumed linear behavior for propagating fractures or non-
linear but stationary fractures. In contrast, the GFEM described here can handle the case of
propagating non-linear fractures with load-displacement curves exhibiting softening. This
creates several challenges for a multiscale method since it requires algorithms able to deal
with load-dependent discretization spaces while avoiding mapping of solutions between
spaces.

Model boundary value problem

Let a domain ΩG with discontinuity surfaces Γ coh be occupied by a body to be open, and
bounded by a smooth boundary ΓG that involves Γ u

G and Γ t
G for prescribed displacement ū

and traction t̄, respectively. Figure

The body can be characterized by a single variable, the displacement field uG : ΩG→Rndim

(with ndim = 3 for three dimensions) which weakly satisfies equilibrium in a Hilbert space
H1 as ∫

ΩG

∇
s (δuG) : σ (uG) dV+

∫
Γ coh

δ [[uG]] · tcoh ([[uG]]) dS+η

∫
Γ u

G

δuG ·uG dS

=
∫

ΩG

δuG ·b dV+
∫

Γ t
G

δuG · t̄ dS+η

∫
Γ u

G

δuG · ū dS
(5)

for all δuG ∈ H1. Here, we use notations σ for the Cauchy stress tensor, b for the
volumetric body force, η for the penalty parameter, and [[uG]] for the jump of displacement
on Γ coh, respectively.

The constitutive relation between the cohesive traction, tcoh, and the displacement jump,
[[uG]], is in general highly non-linear. Global-local enrichments able to approximate this
behavior are presented next.
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Figure 1: GFEMgl framework for two-scale simulations of propagating cohesive fractures. Numerically
computed solutions of the extracted local boundary value problem are used to enrich global shape functions
while solutions of the original global boundary value problem provide boundary conditions for the local
problem, thus defining two interdependent problems at different scales.

Fine-scale non-linear local problem

Let uk−1
G ∈ Sk−1

G (ΩG) be a GFEM approximation of the solution uG of Problem (5) at
the (k−1)th load/displacement step. Hereafter a load and/or displacement step is denoted
simply by load step. The definitions of a global problem to compute uk−1

G and the solution
space Sk−1

G are provided later. Global-local enrichments are used in the definition of Sk−1
G .

These functions are the solution of non-linear local problems as described next.

Let a sub-domain ΩL ⊂ΩG containing, for simplicity, the entire pre-defined crack path as
illustrated in Figure 1. Prescribed displacements ūk and tractions t̄k at the kth solution step
are prescribed on ΓL∩Γ u

G and ΓL∩Γ t
G, respectively, where ΓL denotes the boundary of ΩL.

The boundary conditions prescribed on ΓL\
(
ΓL∩ (Γ u

G ∪Γ t
G)
)

are provided by an estimate,
uk

G,0, of the global solution at the kth load step and defined as

uk
G,0 :=

k
k−1

uk−1
G . (6)

Solution uk
G,0 is used as boundary conditions on the portion of ΓL that does not intersect

with the boundary of the global domain ΩG. This is a key aspect of the method.

Using the above definitions, the weak statement of the non-linear local problem at the kth
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load step reads: Find uk
L ∈ Sk

L (ΩL)⊂H1 (ΩL) such that for all δuk
L ∈ Sk

L (ΩL),∫
ΩL

∇
s(δuk

L) : σ(uk
L) dV+

∫
Γ coh

δ [[uk
L]] · tcoh([[uk

L]]) dS+η

∫
ΓL∩Γ u

G

δuk
L ·uk

L dS

+κ

∫
ΓL\(ΓL∩(Γ u

G∪Γ t
G))

δuk
L ·uk

L dS =
∫

ΩL

δuk
L ·bk dV+

∫
ΓL∩Γ t

G

δuk
L · t̄

k dS

+η

∫
ΓL∩Γ u

G

δuk
L · ūk dS+

∫
ΓL\(ΓL∩(Γ u

G∪Γ t
G))

δuk
L · [t(uk

G,0)+κuk
G,0] dS

(7)

for the penalty parameter η and the spring constant κ defined on ΓL∩Γ u
G and

ΓL\
(
ΓL∩ (Γ u

G ∪Γ t
G)
)
, respectively. The local solution space Sk

L (ΩL) is defined using the
standard GFEM shape functions. Much finer meshes are typically used at local than in the
global problem as illustrated in Figure 2. This figures shows the application of the GFEMgl

to a three-point bending test. This problem was used in [12] to validate the proposed
multiscale method.

Enrichments 
Damage parameters 

BCs
Fine-scale local problem

Coarse-scale global problem

: nodes enriched by polynomials & 
Heaviside functions

: nodes enriched by only polynomials

: nodes enriched by polynomials & 
local solutions

: nodes enriched by only polynomials

Interface between local domain 
boundary and global domain

Figure 2: Model problem used to illustrate the non-linear GFEMgl. The solution computed on the coarse
global mesh provides boundary conditions for the extracted local domain in a neighborhood of non-linear
cohesive fracture. A fine mesh is required to resolve fine-scale features in the local problem, whereas a
coarse mesh is used to capture smooth structural behavior in the global problem. Red spheres denote nodes
enriched by local solutions in the global mesh and nodes enriched by Heaviside functions in the local mesh,
respectively. It is noted that the local mesh does not match the global one at the local domain boundary.

Global-Local Enrichment Functions for Cohesive Fractures

The local solution uk
L defined in the previous section is used to build the following GFEM

shape function for the approximation of global solution uG of Problem (5)

φ
α,k = Nαuk

L, (8)
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where the partition of unity function, Nα , is provided by a coarse global FE mesh for
ΩG and uk

L has the role of an enrichment or basis function for the patch space χα(ωα).
Hereafter, uk

L is denoted a global-local enrichment function at the kth load step. The cor-
responding global GFEM space is given by hierarchically augmenting the standard FEM
solution space SFEM with an enrichment space Sk

ENR containing shape function φ
α,k, i.e.,

Sk
G = SFEM +Sk

ENR = SFEM +{Nαugl,k
α (no summation on α), α ∈I gl} (9)

where I gl has the indexes of nodes (patches) enriched with global-local functions. A node
α can belong to set I gl only if ωα ⊂ΩL. Vector ugl,k

α belongs to χα(ωα) and is given by

ugl,k
α =


uk

αuk,<u>
L

vk
αuk,<v>

L
wk

αuk,<w>
L

 (10)

where uk,<u>
L , uk,<v>

L , uk,<w>
L are the components of the local solution uk

L vector in the
global Cartesian coordinate directions and uk

α , vk
α , wk

α ∈ R are global degrees of freedom.
Equation (10) implies that G-L enrichments lead to only three additional DOFs per global
node, regardless of the size of the local problem used in the computation of uk

L.

The global GFEM space Sk
G defined above can be used to discretize the non-linear global

problem (5) and find a global approximation uk
G ∈ Sk

G(ΩG) at the kth load step. The method-
ology is illustrated in Figure 2. The global solution provides boundary conditions for fine-
scale problems while their solutions are used as enrichment functions for the coarse-scale
problem through the partition of unity framework of the GFEM. Figure 3 shows the load-
displacement curves computed with the GFEMgl and reference numerical and experimental
data [12]. It is noted that the GFEMgl model has about 10 times fewer degrees of freedom
than in the case of available adaptive methods.

It is noted that the solution space Sk
G is adaptive: It changes at every load step in order

to approximate the non-linear response of the problem while keeping the global mesh un-
changed. This change must be properly handled when solving the non-linear equations us-
ing, for example, Newton-Rhapson algorithms. In particular, the vector with global DOFs
dk−1

G computed at the previous load step is not a robust choice for the initialization of the
Newton-Rhapson non-linear iterations at load step k: The global vectors dk−1

G and dk
G repre-

sent coefficients of different sets of GFEM shape functions. Even though the global GFEM
mesh does not change, the solution space does. An efficient and robust algorithm to deal
with this issue is presented in [12]. It is based on the solution of a linear problem using
a secant material stiffness instead of the tangent stiffness. Further details can be found in
[12, 14].
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Figure 3: Representative problem solved with the non-linear GFEMgl [12]: (normalized) reaction P versus
crack mouth opening displacement (CMOD) curves for the problem shown in Figure 2. The GFEMgl solution
computed in the global problem is compared with available reference data. FEM, finite element method; hp-
GFEM, hp version of the generalized finite element method; DOFs, degrees of freedom; GFEMgl, generalized
finite element method with globallocal enrichments.

Stable Generalized Finite Element Method

In this section, we report on a technique to perform a near-orthogonalization of enrichments
used in the Generalized FEM. The technique involves modifications to enrichments for the
GFEM in order to create functions that are near orthogonal to the finite element partition
of unity. This so-called Stable GFEM (SGFEM) was originally proposed by Babuška and
Banerjee [BB12]. They have shown that the conditioning of the SGFEM is not worse than
that of the standard FEM. In this project, extensions of the SGFEM to three-dimensional
fracture problems were developed in collaboration with Prof. Ivo Babuška from University
of Texas at Austin and Prof. Uday Banerjee from Syracuse University. This collaboration
is at no cost to the AFOSR. A summary of the method is presented below. Details on this
3-D SGFEM are described in [10, 8].

In the SGFEM, the enrichment functions employed in GFEM are locally modified to con-
struct the patch approximation spaces χ̃α , α ∈ Jh

enr. The modified SGFEM enrichment
functions L̃αi(xxx) ∈ χ̃α(ωα) are given by

L̃αi(xxx) = Lαi(xxx)− Iωα
(Lαi)(xxx) and χ̃α = span{L̃αi}nα

enr
i=1 (11)

where Iωα
(Lαi) is the piecewise tri-linear finite element interpolant of the enrichment func-

tion Lαi on the patch ωα . The interpolant Iωα
(Lαi)(ξξξ ) at master coordinate ξξξ of a finite

element τ with nodes I (τ) and belonging to patch ωα is given by

Iωα
(Lαi)(ξξξ ) = ∑

β∈I (τ)

Lαi(xxxβ )N
β (ξξξ ) (12)
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where vector xxxβ has the coordinates of node β of element τ and Nβ is the piecewise tri-
linear FE shape function for node β . Further details can be found in [10]. The global
enrichment space associated with χ̃α is denoted by S̃ENR. Therefore, the SGFEM trial
space SSGFEM is given by

SSGFEM = SFEM + S̃ENR. (13)

The SGFEM shape functions φ̃ αi(xxx) belonging to S̃ENR are constructed using the same
framework as in the GFEM and are given by

φ̃
αi(xxx) = Nα(xxx)L̃αi(xxx). (14)

Figure 4 illustrates the computation of SGFEM enrichment functions and shape functions
in S̃ENR in a 2-D setting.

Figure 4: Figure illustrating the computation of an SGFEM enrichment function in 2-D. The picture on the
left shows the construction of a GFEM shape function. The center picture features the original enrichment
function, Lαi, at the top, the piecewise bi-linear finite element interpolant of which is in the middle, Iωα

(Lαi),
and the modified SGFEM enrichment function, L̃αi, is shown at the bottom. The picture on the right shows
the construction of an SGFEM shape function, φ̃ αi.
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Sciences Center (SSC) for the modeling of vibratory damage with reduced-order models
and the GFEM as reported in [OH14, ODE15].

Impact in the Research Community

The research results of this project have attracted considerable attention from the compu-
tational mathematics and mechanics research community. An evidence of this impact is
the various keynote lectures at international conferences and invited research lectures at
prestigious universities delivered by the PI.
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